Sale!

20 LTR WATER JAR PLANT

150,000.00

Treatment for drinking water production involves the removal of contaminants from raw water to produce water that is pure enough for human consumption without any short term or long term risk of any adverse health effect. Substances that are removed during the process of drinking water treatment include suspended solids, bacteria, algae, viruses, fungi and minerals such as iron and manganese.

The processes involved in removing the contaminants include physical processes such as settling and filtration, chemical processes such as disinfection and coagulation and biological processes such as slow sand filtration.

Compare

Description

Product Description : Treatment for drinking water production involves the removal of contaminants from raw water to produce water that is pure enough for human consumption without any short term or long term risk of any adverse health effect. Substances that are removed during the process of drinking water treatment include suspended solids, bacteria, algae, viruses, fungi and minerals such as iron and manganese.

The processes involved in removing the contaminants include physical processes such as settling and filtration, chemical processes such as disinfection and coagulation and biological processes such as slow sand filtration.

Measures taken to ensure water quality not only relate to the treatment of the water, but to its conveyance and distribution after treatment. It is therefore common practice to keep residual disinfectants in the treated water to kill bacteriological contamination during distribution.

WHO guidelines are a general set of standards intended to apply where better local standards are not implemeted. More rigorous standards apply across Europe, the USA and in most other developed countries. followed throughout the world for drinking water quality requirements.

Processes

Empty aeration tank for iron precipitation

 Tanks with sand filters to remove precipitated iron (not working at the time)A combination selected from the following processes is used for municipal drinking water treatment worldwide:
  • Pre-chlorination for algae control and arresting biological growth
  • Aeration along with pre-chlorination for removal of dissolved iron when present with small amounts relatively of manganese
  • Coagulation for flocculation or slow-sand filtration
  • Coagulant aids, also known as polyelectrolytes – to improve coagulation and for more robust floc formation
  • Sedimentation for solids separation that is removal of suspended solids trapped in the floc
  • Filtration to remove particles from water either by passage through a sand bed that can be washed and reused or by passage through a purpose designed filter that may be washable.
  • Disinfection for killing bacteria viruses and other pathogens.

Technologies for potable water and other uses are well developed, and generalized designs are available from which treatment processes can be selected for pilot testing on the specific source water. In addition, a number of private companies provide patented technological solutions for treatment of specific contaminants. Automation of water and waste-water treatment is common in the developed world. Source water quality through the seasons, scale and environmental impact can dictate capital costs and operating costs. End use of the treated water dictates the necessary quality monitoring technologies, and locally available skills typically dictate the level of automation adopted.